metal-organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

S. Jose Kavitha,^a Krishnaswamy Panchanatheswaran,^a John N. Low^b and Christopher Glidewell^c*

 ^aSchool of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu 620 024, India,
^bDepartment of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen
AB24 3UE, Scotland, and ^cSchool of Chemistry, University of St Andrews, Fife KY16 9ST, Scotland

Correspondence e-mail: cg@st-andrews.ac.uk

Key indicators

Single-crystal X-ray study T = 120 KMean σ (Wae) = 0.000 Å R factor = 0.058 wR factor = 0.135 Data-to-parameter ratio = 18.7

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

© 2005 International Union of Crystallography Printed in Great Britain – all rights reserved

The *a* polymorph of racemic tris(2,4-pentanedionato- $\kappa^2 O, O'$)vanadium(III), redetermined at 120 K

In the α polymorph of the title compound, [V(C₅H₇O₂)₃], the molecules lie in general positions with no crystallographically imposed symmetry, but with approximate D_3 (32) molecular symmetry.

Received 8 June 2005 Accepted 10 June 2005 Online 17 June 2005

Comment

The title compound, (I) (Fig. 1), crystallizes in two structurally characterized polymorphs, an orthorhombic form in space group *Pbca*, denoted α , and a monoclinic form in space group $P2_1/n$, denoted β (Morosin & Montgomery, 1969). The orthorhombic α form has been structurally characterized only at ambient temperature (Morosin & Montgomery, 1969; Filgueiras *et al.*, 2001), but neither report mentioned the molecular stereochemistry. We have now taken the opportunity to redetermine the structure of this phase using diffraction data collected at 120 K: the unit-cell dimensions and space group confirm that the same phase is present at 120 K as at ambient temperature.

In the α polymorph of compound (I) the molecules lie in general positions in space group Pbca, but the local molecular symmetry is very close to the ideal D_3 (32) expected for isolated molecules. Although the compound is racemic, the molecules are chiral, but the centrosymmetric space group accommodates equal numbers of the Λ and Δ enantiomorphs: the selected reference molecule (Fig. 1) has Λ configuration. The corresponding bond distances within the three independent ligands show some modest variation, as exemplified by the V-O and O-C distances (Table 1); likewise the ligand bite angles O-V-O within the rings show minor variation. While two of the three rings are effectively planar, that including atoms O11 and O13 shows a minor puckering, and this ring is best described as forming a boat conformer with a total puckering amplitude of 0.199 (2) Å, with the maximum displacement from the mean ring plane found for the V atom of 0.138 (2) Å.

Figure 1

The Λ enantiomorph of compound (I) in the α polymorph, showing the atom-labelling scheme. Displacement ellipsoids are drawn at the 30% probability level.

Within each domain 0 < x < 0.5 and 0.5 < x < 1.0 there are four molecules, two of each enantiomer, with the Λ and Δ forms alternating, in chess-board fashion, on an approximately square grid (Fig. 2).

Experimental

The title compound was prepared from VO(CH₃COCHCOCH₃)₂, according to the published procedure of Grdenić & Korpar-Čolig (1964), except that powdered tin was employed as the reducing agent rather than powdered zinc [m.p. 457 K; literature m.p. (Grdenić & Korpar-Colig, 1964) 457 K].

> Mo $K\alpha$ radiation Cell parameters from 3824 reflections $\theta=3.2{-}27.5^\circ$ $\mu = 0.62~\mathrm{mm}^{-1}$ T = 120 (2) K Plate, brown $0.22 \times 0.18 \times 0.03 \text{ mm}$

Crystal data

$[V(C_5H_7O_2)_3]$
$M_r = 348.26$
Orthorhombic, Pbca
a = 13.3920(7) Å
b = 16.4043 (6) Å
c = 15.1901 (10) Å
V = 3337.1 (3) Å ³
Z = 8
$D_x = 1.386 \text{ Mg m}^{-3}$

Data collection

Bruker–Nonius KappaCCD	3824 independent reflections
diffractometer	1876 reflections with $I > 2\sigma(I)$
φ and ω scans	$R_{\rm int} = 0.174$
Absorption correction: multi-scan	$\theta_{\rm max} = 27.5^{\circ}$
(SADABS; Sheldrick, 2003)	$h = -17 \rightarrow 17$
$T_{\min} = 0.859, \ T_{\max} = 0.982$	$k = -21 \rightarrow 21$
30601 measured reflections	$l = -19 \rightarrow 18$

Projection on to (100) of the domain 0 < x < 0.5 in the α polymorph of compound (I), showing the alternation of Λ and Δ enantiomorphs. For the sake of clarity, the H atoms have been omitted. Atoms marked with an asterisk (*), a hash (#) or a dollar sign (\$) are at the symmetry positions $(x, \frac{1}{2} - y, -\frac{1}{2} + z)$, $(\frac{1}{2} - x, \frac{1}{2} + y, z)$ and $(\frac{1}{2} - x, 1 - y, -\frac{1}{2} + z)$, respectively.

Refinement

Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0529P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.058$	+ 0.2837P]
$wR(F^2) = 0.135$	where $P = (F_0^2 + 2F_c^2)/3$
S = 1.00	$(\Delta/\sigma)_{\rm max} < 0.001$
3824 reflections	$\Delta \rho_{\rm max} = 0.32 \ {\rm e} \ {\rm \AA}^{-3}$
205 parameters	$\Delta \rho_{\rm min} = -0.47 \text{ e } \text{\AA}^{-3}$
H-atom parameters constrained	

Table 1

Selected geometric parameters (Å, °).

V1-011	1.998 (2)	C11-O11	1.272 (4)
V1-O13	1.983 (2)	C13-O13	1.279 (4)
V1-O21	1.971 (2)	C21-O21	1.283 (4)
V1-O23	2.006 (2)	C23-O23	1.263 (4)
V1-O31	1.986 (2)	C31-O31	1.271 (4)
V1-O33	1.959 (2)	C33-O33	1.284 (4)
O11-V1-O13	86.30 (10)	O31-V1-O33	88.74 (9)
O21-V1-O23	88.35 (9)		

All H atoms were located in difference maps, and then treated as riding atoms, with C-H distances 0.95 Å and $U_{iso}(H) = 1.2U_{eq}(C)$ for the ring CH atoms, and C-H distances 0.98 Å and $U_{iso}(H) =$ $1.5U_{eq}(C)$ for the methyl groups.

Data collection: COLLECT (Hooft, 1999); cell refinement: DENZO (Otwinowski & Minor, 1997) and COLLECT; data reduction: DENZO and COLLECT; program(s) used to solve structure: OSCAIL (McArdle, 2003) and SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: OSCAIL and SHELXL97 (Sheldrick, 1997); molecular graphics: PLATON (Spek, 2003); software used to prepare material for publication: *SHELXL97* and *PRPKAPPA* (Ferguson, 1999).

X-ray data were collected at the EPSRC X-ray Crystallographic Service, University of Southampton, England. The authors thank the staff for all their help and advice.

References

- Ferguson, G. (1999). PRPKAPPA. University of Guelph, Canada.
- Filgueiras, C. A. L., Horn, A., Howie, R. A., Skakle, J. M. S. & Wardell, J. L. (2001). *Acta Cryst.* E**57**, m157–m158.

Grdenić, D. & Korpar-Čolig, B. (1964). Inorg. Chem. 3, 1328-1329.

Hooft, R. W. W. (1999). COLLECT. Nonius BV, Delft, The Netherlands. McArdle, P. (2003). OSCAIL for Windows. Version 10. Crystallography

- Centre, Chemistry Department, NUI Galway, Ireland. Morosin, B. & Montgomery, H. (1969). Acta Cryst. B25, 1354–1359.
- Otwinowski, Z. & Minor, W. (1997). *Nethods in Enzymology*, Vol. 276, *Macromolecular Crystallography*, Part A, edited by C. W. Carter Jr & R. M. Sweet, pp. 307–326. New York: Academic Press.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Sheldrick, G. M. (2003). SADABS. Version 2.10. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.